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On-line Algorithms for 2-Coloring Hypergraphs
via Chip Games

(Extended Abstract)

Javed A. Aslam* Aditi Dhagatt
Laboratory for Computer Science Department of Mathematics

Massachusetts Institute of Technology Massachusetts Institute of Technology
Cambridge, MA 02139 Cambridge, MA 02139

Abstract

The problem of 2-coloring hypergraphs is known to be NP-complete. However,
for k-hypergraphs h- of degree k, and k > 10, the Lov~sz Local Lemma guarantees
the existence of a 2-coloring of -t such that no edge is monochromatic. We present
an on-line algorithm to find such a coloring for k-hypergraphs with fewer than 2 k-1

edges. The algorithm also works for k-hypergraphs with no degree constraints and
is easily generalized to an algorithm for d-coloring a k-hypergraph with fewer than
dk- 1 edges. The algorithms are 0(1)-competitive against adaptive on-line adversaries.
Further, we show that for k-hypergraphs with > 4k edges, there exists a simple on-line
adversary which thwarts any on-line 2-coloring algorithm. This adversary generalizes to
work against on-line algorithms attempting to d-color k-hypergraphs with > 2dk edges.
A cleverer on-line adversary is also shown which succeeds against on-line algorithms [)TS6

attempting to 2-color k-hypergraphs with > k(l-+ ¢)k edges (where 0 is the Golden
Ratio). Another on-line adversary is shown which succeeds against on-line 2-coloring
algorithms for legree k k-hypergraphs with > (3+2-/2)k edges. All of these results are
achieved using a Chip Game model. We show that on-line algorithms for a scheduling
problem follow from these 2-coloring algorithms.
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1 Introduction

Often we can prove the existence of objects with certain properties without being able to
find such objects efficiently. For example, it can be shown that a random graph on n nodes
(where each edge is present with probability 1/2) has a clique of size 2 log2 n, but no efficient
algorithm for finding a clique this large (or even one of size (1 + C) log 2 n, for some e > 0) is
known. In this paper, we consider another such problem which derives its motivation from
"Property B" and the Lovisz Local Lemma.

A hypergraph H is a collection of subsets (edges) El, E 2 ,. .. , E, of a set of nodes V =

{1, ... , n}. 'A hypergraph is 2-colorable if there exists a coloring of the set of nodes V into
two colors (say, red and blue) so that no edge is monochromatic. We call the problem of
finding such a coloring the hypergraph 2-coloring problem. A k-hypergraph is a hypergraph
where each edge Ei contains exactly k nodes. A 2-hypergraph, therefore, is an ordinary
graph. In this paper we shall consider the 2-coloring problem for k-hypergraphs.

The general problem of 2-coloring hypergraphs (also called the set-splitting problem)
is known to be NP-complete [Lov73]. However, using probabilistic methods, the existence
of 2-colorings for bounded-size k-hypergraphs has been proven. A k-hypergraph is said to
have Property B if it is 2-colorable. Erd6s and Hajnal [EH61] asked "What is m(k), where
m(k) is the largest s such that each k-hypergraph with s edges has Property B?" Erd6s
[Erd73a, Erd73b] showed that

2 -i < m(k) < k22k+i.

The lower bound was subsequently improved to 2 k(I + 4k - ' ) - by Schmidt [Sch64] and then
to fl(k2k) by Beck [Bec78]. All of these bounds, however, are not algorithmic. The lower
bounds, for instance, prove that for appropriately small s, there exists a 2-coloring for each
k-hypergraph of size s, but how such colorings may be found efficiently is not known. We call
the problem of finding such 2-colorings the General Hypergraph 2-Coloring Problem.
In this paper, we give an on-line algorithm to solve the General Hypergraph 2-Coloring
Problem for k-hypergraphs with < 2 k- i edges. It uses a weighting technique similar to one
that Erd6s and Selfridge [ES73] used to solve another problem. Our algorithm runs in time
O(ns) and is 0(1)-competitive against any adaptive on-line adversary. For definitions of
competitiveness of on-line algorithms and adversaries, see papers of Karlin, et al [KMRS88]
and Ben-David, et al [BDBK+90].

Another motivation for this work comes from a question posed by Spencer [Spe87]. It
has to do with the Lovisz Local Lemma which first appeared in a paper of Erdas and Lov~sz
[EL75]. We state it here in a somewhat restricted form:

Lov~isz Local Lemma bet A 1,..., A, be events and let G be the dependency graph of these
events, that is, (i,j) E G - Ai and Ai are not rnutually independent. Let d be the degree of
G. If Vi, Pr[Ai] < p and 4dp < 1 , then

Pr[AiA] > 0.

The Local Lemma proves the existence of a point x satisfying AiAi, even when the
probability of AiAi may be small. In Spencer's words, it guarantees the existence of "a needle



in a haystack". For instance, consider a k-hypergraph 7 = E,...,E, C V, where each
node has degree k (i.e., occurs in at most k of the Ei's). For any k > 10, the Local Lemma
guarantees that h" has Property B. To see this, 2-color V randomly, and let Aj be the event
that E, is monochromatic. Here, p = Pr[AjJ = 21-k and d < k(k - 1), since any E can share
a node with at most k - 1 other edges and it has k such nodes to share. For k > 10, 4dp
4k(k - 1)2 1-k < 1; therefore, by the Local Lemma, Pr[no E is monochromatic] > 0. We
call the problem of 2-coloring a k-hypergraph of the sort described above the Restricted
Hypergraph 2-Coloring Problem.

Spencer posed the following question, "Is there a polynomial time algorithm in s to
solve the Restricted Hypergraph 2-Coloring Problem?" Again, we answer Spencer's question
positively for s < 2k-1, giving an on-line algorithm which runs in time O(kn). This algorithm
is also 0(1)-competitive against adaptive on-line adversaries.

The Lovasz Local Lemma guarantees 2-colorability for all degree k k-hypergraphs, so
long as k > 10. However, we show that no on-line algorithm can 2-color such k-hypergraphs
with > (3 + 2 V/)k edges, by exhibiting an algorithm which acts like an adversary. For any
on-line 2-coloring algorithm and s > (3 + 2x/2)k, the adversary produces (on-line) a degree
k k-hypergraph of size s which the algorithm fails to 2-color.

In the general case, Erdds's upper bound for m(k) says that for s > k2k+l , there exist
hypergraphs of size s which do not have Property B (i.e., have a chromatic number > 2).
WOe show another adversary, which for any on-line 2-coloring algorithm and s > k(1 + 0)k -
k. 2 .618k, produces a k-hypergraph of size s which the algorithm fails to 2-color. Here, 0 is
the Golden Ratio (

As an application of these results, consider a scheduling problem which we will call the
Committee Meeting Problem. Suppose that there are n committee members and s
committees drawn from these members. At a conference there will be two general meetings
held in parallel. Is there a way to assign each member to one of these two meetings so
that each committee has at least one member at each meeting? Further, is it possible to
make these assignments on-line (i.e. as each member registers or his registration material
is received)? An algorithm for the General Hypergraph 2-Coloring Problem will solve this
problem.

The "means to our end" will be games. In the next section, we define Chip Games to
model our problem. These games allow us to look at each of the above problems simulta-
neously. In sections 3 and 4 we prove certain properties of these Chip Games, which we
generalize to hypergraph d-coloring in section 5. These properties allow us to conclude the
aforementioned results in section 6. Section 7 ends the paper with mention of some open
problems.

2 Chip Games

In each step, an on-line algorithm for 2-coloring a k-hypergraph h- is given a node j E V and
the edges E, which contain j. 1' ,iust theii -iIoose a coio for this jaode, say blu, cir red. If
the algorithm is successful, then after IVI such steps, none of the Ei's will be monochromatic.
This procedure cap easily be viewed as a game between two players, a Pusher and a Chooser.
In every round, the Pusher selects which edges the current node is in, and the Chooser then

2
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Figure 1: Chip Game

selects a color for that node. The Pusher wins if and only if at least one of the edges is
monochromatic at the end of the IVI-th round. Clearly, a winning strategy for the Chooser
translates into an on-line algorithm for 2-coloring X. Such an algorithm will simply color
each node according to the Chooser's winning strategy.

Consider the following game equivalent to the Pusher-Chooser game above. Here, each
of the edges is represented by a chip, which will be placed on a uni-dimensional board with
levels marked "0" in the middle, "1" through "k" on the right, and "1" through "k" on the
left, as shown in Figure 1. Each chip belongs to one of four categories:

1. Blank chips: These are chips at level 0, corresponding to Ei's with no nodes.

2. Red chips: These chips correspond to monochromatic red Ei's and are placed at levels
right of 0. A red chip at level j corresponds to a monochromatic red edge with j nodes.

3. Blue chips: These chips correspond to monochromatic blue Ei's and are placed at levels
left of 0. Again, a blue chip at level j corresponds to a monochromatic blue edge with
j nodes.

4. Garbage chips: These correspond to nonempty Ei's which are no longer monochro-
matic. Garbage chips are kept off the board.

At the beginning of the game, all s chips are blank. In every round of the game, the
Pusher selects some number of blank, red, blue and garbage chips, and the Chooser selects
a color. If the chosen color is red, then the blank chips move one level to the right (since the
corresponding edges are now monochromatic red with one node), the red chips also move
one level to the right (since the corresponding monochromatic red edges have one extra red
node) and the blue chips become garbage and move off the board. Analogously, if the chosen
color is blue, blank and blue chips move one level to the left, and red chips become garbage.
The selected garbage chips remain garbage and stay off the board.

There are IVI such rounds. The Pusher wins the game if he has forced at least one
chip to level k, either on the left or on the right, by the end of the game, since such a chip
corresponds to a monochromatic edge in a k-hypergraph. For s chips and a board with 2k+ 1
levels (as in Figure 1), we will call the game defined thus far the General Chip Game
G(s, k). This corresponds to the General Hypergraph 2-Coloring Problem. We will also be
interested in a restricted Chip Game, where the Pusher is restricted to picking at most c
chips in any round, for some fixed c. We call this the c-Restricted Chip Game G(s, k).
This restricted game corresponds to the Restricted Hypergraph 2-Coloring Problem.

3



Both of these versions of Chip Games are well-defined in the game-theoretic sense. So,
for any s and k, exactly one of the Pusher or Chooser has a winning strategy. Define f(k) =
smallest s for which the Pusher has a winning strategy in the General Chip Game G(s, k).
Similarly, define f,(k) = smallest s for which the Pusher has a winning strategy in the
c-Restricted Chip Game G(s, k). Because the games are well-defined, we know that the
Chooser will have a winning strategy in G(f(k) - 1, k) (and similarly, in G(f,(k) - 1, k)). In
the following sections, we give lower and upper bounds for f and f,.

3 Lower Bound for f and f,

In this section we give a lower bound on the number of chips needed for the Pusher to win
a Chip Game. This lower bound holds regardless of how many chips the Pusher is allowed
to choose in each round. Thus, it applies to both the General and c-Restricted chip games.

The Pusher wins a Chip Game if he can force a chip to level k by the end of the game. A
winning strategy for the Chooser must prevent this from happening. The intuition behind
the Chooser's strategy is to give more importance to chips which are closer to level k.

The Chooser assigns a weight to each of the red and blue chips on the board. Each chip
x at level i > 0 is given the weight w(x) = 2 -1. We define the weight of a set of chips C
by W(C) = EDEc w(x). The Chooser will color according to the following strategy. In each
round j, the Pusher selects some number of blank, red, blue and garbage chips. The Chooser
will calculate the weight of the selected blue chips and the weight of the selected red chips.
If the selected blue chips are "heavier" than the selected red chips, then the Chooser will
color the new node red. If the selected red chips are heavier, then the Chooser will color the
new node blue. If the weights are equal (or no red or blue chips were selected), then he will
color arbitrarily. Consider a Chip Game in which the Chooser follows the aforementioned
strategy. Let b(j) be the number of blank chips used in round j, and let B(j) be the total
number of blank chips used in rounds 1,2,.. ,j. Thus B(j) = Ej= b(i) and recursively
B(j) = B(j - 1) + b(j). Let 1j be the set of red chips after round j, and let 13 be the set
of blue chips after round j. Further, let R1 be the set of red chips selected in round j + 1
and B! be the set of blue chips selected in round j + 1. We now show the following:

Lemma 1 Vj, B(j) > W(1IZ) + W(3j).

Proof: The proof is by induction on the number of rounds.
Base case: In round 1 the Pusher selects some m blank chips, and the Chooser arbitrarily

colors them red or blue (placing them at the appropriate level 1). Assume without loss of
generality that the Chooser colors blue. Then B(1) = m, and W(TZ1)+W(51i) = O+W(BI) =
m .21-1 = m. Thus, B(1) = W(7Z) + W(B1 ).

Inductive step: By induction, assume that after round j, B(j) >_ W(j) + W(B).
Assume without loss of generality that W(R.;) _> W(B;) (and thus the Chooser colors blue).
We then have the following:

B(j + 1) = B(j) + b(j+ l)

> W(Z) + W(B.) + b(j + 1)

4



= W(1z;) + W(TZj - 1?;) + W(B;) + W(B, - B;) + b(j+ 1)

> 2. W(B) + W(1zI - RZ;) + W(Bj - B!) + b(j + 1)

= W(lZ+ 1) + W(3j+I)

The last line can be seen easily by considering which chips will be in the sets j+ &
Bj+i and what new weights these chips will have. I

We now have the following theorem:

Theorem 1 The Pusher requires at least 2k- blank chips to win, i.e. f(k), f(k) > 2' - '.

Proof: In order to win, the Pusher must have at least one chip at level k by the end of the
game. This chip alone has weight 2k-1, and by Lemma 1 at least 2k -1 blank chips will have
been used by this time. Since the Chooser's strategy doesn't depend on how many chips the
Pusher picks at a time, the lower bound applies to both f and fc. I

4 Upper Bounds for f and f,

Unlike the lower bound, which applied to both the General and c-Restricted Chip Games,
we show different upper bounds for these two cases.

4.1 Upper Bounds for f

We begin by giving a simple Pusher strategy which requires only 4k chips (thus implying
that f(k) < 4k). Starting with a stack of s chips at level 0, the Pusher initially chooses
half of these chips. The Chooser must move them all the same way, thus creating a stack
of s/2 chips at either blue or red level 1 and leaving a stack of s/2 chips at level 0. In each
subsequent round, the Pusher picks half of the chips in each of the two outermost stacks,
thus creating a new half-stack to one side and leaving a half stack on the other side. This
process can be repeated at most 2k times (the width of the board) until the Pusher wins by
creating a half-stack at level k. Thus, at most 22k = 4k chips are required initially.

In the above strategy, the Pusher is "passive" in the following sense- he has the power to
move some number of chips closer to the edge (by picking both red and blue chips), but he
does not have the power to decide which chips (red or blue) will be moved. The following
Pusher strategy is "aggressive" in the sense that the Pusher now forces the Chooser to move
a set of chips in a particular direction.

4.1.1 The Aggressive Strategy

Suppose the Pusher has two stacks of chips, one each at blue and red levels i. Suppose
further that the Pusher wants to move some number of chips towards the blue edge of the
board. He starts by pitting one chip at blue level i against one chip at red level i. If the
Chooser colors blue, then the Pusher repeats the process. If the Chooser colors red, then
the Pusher pits the chip moved to red level i + 1 against -f chips at blue level i (where / is
some fixed constant > 1). If the Chooser now colors blue, the Pusher starts over (pitting

5



one chip at blue level i against one chip at red level i). If the Chooser colors red, the Pusher
then pits the chip moved to red level i + 2 against 7f2 chips at blue level i. In general, as
long as the Chooser colors red, the Pusher will pit the chip moved to red level i + j against
7j chips at blue level i. When the Chooser finally relents (i.e. colors blue), the Pusher will
start over (pitting one chip at blue level i against one chip at red level i). Notice that the
Chooser must relent after at most k - i rounds, or a chip will be moved to red level k (and
thus the Pusher will win).

Lemma 2 If there are at least chips at blue level i, then the Pusher is guaranteed tof-1

be able to move some number of chips to blue level i + 1.

Proof: In the above strategy, chips are moved to blue level i + 1 whenever the Chooser
relents and colors blue. As mentioned above, the Chooser must relent after at most k - i
rounds. Now consider the number of chips needed at blue level i to insure that the Pusher
does not run out before the Chooser relents. If the Chooser does not relent until round k - i,
then

7- 1

chips will have been used from blue level i. Thus, if there are at least - chips at blue

level i, then the Chooser will be forced to relent (and move some chips to blue level i + 1)
before the stack at blue level i runs out. I

We define a stage to be the sequence of rounds starting when the Pusher pits one chip
at blue level i against one chip at red level i and ending when the Chooser finally relents.
In each stage, some number of chips will be moved to blue level i + 1, and some number of
chips will have been used from blue level i. We define the fraction of chips moved to blue
level i + 1 as the quotient of the number of chips moved to blue level i + I and the number
of chips used from blue level i.

Lemma 3 In each stage, the fraction of chips moved is >

Proof: Suppose the Chooser relents after r rounds. We then have the following:

Chips moved to blue level i + 1 = - 1

Chips used from blue leveli = I+-y+ +.y2  ± ' -

7-1

Therefore,

Fraction of chips moved Chips moved to blue level i + 1
Chips used from blue level i=1

6 y-1

.yr - 1

6



> 7-- 
.yr

y-
7r

Notice that this is independent of r. U
We define the total fraction of chips moved after some number of stages as the quotient

of the total number of chips moved to blue level i + 1 and the total number of chips used
from blue level i.

Lemma 4 After any number of stages, the total fraction of chips moved is > :z_ .'Y

Proof: Let s be the number of stages. Let aj be the number of chips moved to blue level
i + 1 in the j-th stage, and let b, be the number of chips used from blue level i in the j-th
stage. From Lemma 3, we have that Vj, 2L > The total fraction of chips moved after s

stages is (Z.-i a,)/(E= bj).

Ej-1 a3  r::;-l b12,A
Sbi3  b

= bj
b,

Lemma 5 Given m + < chips at blue level i and m -=! chips at red level i, the Pusher
can move at least m -Z- chips to blue level i + 1.-v
Proof: The Pusher will follow the strategy described above until there are fewer than
2 1  chips left at blue level i. Lemma 2 guarantees that the Pusher can keep moving chips

-- I

to blue level i + 1 as long as there are at least 2fL chips at blue level i. Clearly, when there

are fewer than k chips at blue level i, at least m chips will have been used. Therefore,
by Lemma 4, we know that at least m • . chips will have been moved to blue level i + 1.-y

No more than m • chips are needed at red level i to move m •z- chips to blue level
i + 1, since in the worst case the Chooser can destroy at most one red chip for every blue
chip moved. I

For simplicity of analysis, we will use a strictly weaker version of this lemma. Note that
the following lemma is implied by the above lemma when y > 2.

Lemma 6 Given rn + -k- i chips at both blue and red levels i, the Pusher can move at least
m • chips to blue level i + 1.

-V
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4.1.2 The Iterative Pusher Strategy

We now show an iterative Pusher strategy which proU ices the desired bound. In the i'th
iteration, the Pusher starts with two equal height stacks, one each at blue and red levels i.
In the course of this i'th iteration, the Pusher will create two new equal height stacks, one
each at blue and red levels i + 1. The Pusher wins if he starts with enough chips so that he
does not run out before the k'th interation. The number of chips needed in the i'th iteration
(at lue and red levels i) will be a function of k - i; let g(k - i) be this function. To win,
the Pusher needs g(k - k) = g(O) = 1. We can now build a recurrence for the number of
chips required in any iteration.

In the i'th iteration, the Pusher has stacks of height g(k - i) at blue and red levels i. His
strategy is to first pick g(k - [i + 1]) chips from each of these stacks. Tne Chooser must then
create a stack of height g(k - [i + 1]) at either blue or red level i + 1. Assume, without loss
of generality, that the Chooser colors red ,.nd thus creates a stack of height g(k -- [i + 11)
at red level i + 1). The Pusher must now create a stack of height g(k - [i + 1]) at blue level
i + 1. To do this, he needs only - • g( - [i + 1]) + -yk- ' remaining chips at blue and red
levels i (by Lemma 6). We thus obtain the following recurrence:

g(k-i) = g(k-[i+ 1])+ - ' (k-[i41)+ k-i
3'-1

=2-y -I1 . g(k - [i + 1]) + _y-i
27 - 1

Letting m = k - i, we obtain the following:

g(m) = g(m - 1) + -Ym

This recurrence is minimized when -y = 2  At this point, -f = 2 ; 2.618, and the-1l 2

recurrence solves to g(m) = m - y". Note that 3+V5 1 + V" = 1 + 0 where 0 is the
Golden Ratio.

Theorem 2 Given s > k(1 +)k chips, the Pusher can win the General Chip Game G(s, k).

Proof: We are interested in the number of chips needed in the beginning (at level 0). This
value is obtained from the recurrence when m = k. Thus, only k(1 + O)k chips are required.
I

It should also be noted that -y = 1 + 4) is equivalent to 02, and the fraction of chips moved
in Lemma 3 and Lemma 4 (given by :1) is in fact 4 - 1 = 1/0).

4.2 Upper Bound for fc
We now present an upper bound for f,(k) by exhibiting a winning 'Ftrategy for the Pusher
in the c-Restricted Chip Game G((3 + 2 V2/)k, k). We will consider the case c = 2 (i.e. where
two chips are picked in each round). The upper bound for the general case of c > 2 follows
in a similar way, where the Pusher picks [c/21 and [c/2] from the two stacks it is working
on in the strategy given below.

8
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Fig~ie 2: General Phase

We de'i,,: the diameter of two stacks on opposite halves of the board to be number of
levels between them. A stack at blue level i > 0 and a stack at red level j > 0 will have
diameter i + j. A single stack at level 0 will have diameter 0. The Pusher will start with
a stack of chips at level 0 and will initially create two stacks with diameter greater than 0.
In the following phases, the Pusher will start with two stacks of diameter d and will create
new stacks of diamet greater than d. If after every phase, each of the newly created stacks
is nonempty, then the Pusher will win in at most 2k phases (the "width" of the board). In
the following paragraphs, we will show that for a particular Pusher strategy, the heights of
the newly created s.acks after each phase will be at least a constant fraction of the heights
of the stacks used to create them. This will provide us with a bound on the height of the
stack initially required at level 0.

Consider the following Pusher stratugy. In the first phase, the Pusher will repeatedly
select 2 chips from the stack at level 0 until the first point at which the height of one of the
"outer" stacks (at levels 1) is equal to the height of the remaining stack at level 0. In each
of the following phases, the Pusher will start with two equal height stacks, one at blue level
i and one at red lcvely. The Pusher will repeatedly select one chip from blue level i and
one chip from red level j in each round until the first point at which the height of one of
,he outer stacks is equal to the height of the remaining "inner" stacks (see Figure 2). The
analysis that follovs is for the latier general phase but also applies to the initial phase.

Let h be the height of the inner stacks initally, and let a be the fraction of the inner
siacks used to create an outer stack of height equal to the remaining inner stacks. Clearly,

< a < 2. Let hi be the height of the outer stack which has height equal to the remaining- - 3
inner stacks, and let h2 be the height the other outer stack. Nithout loss of generality,
assume that the stack of height h, is at level i + 1, and the stack of height h2 is at level J + 1
as in Figure 2.

The Pusher now choosts which two stacks to use in the next phase according to the larger
of (~ hl)2 If )2 and (A-2). I 2> (-), then the Pusher will use the stacks at levels i + 1 and
j in the next phase. This corresponds to a decrease in height by the fraction ( -) and an
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increase in diameter of 1. If (0) _ ( )2, then the Pusher will use the stacks at levels i + 1
and j + 1 in the next iteration. This corresponds to a decrease in height by the fraction ('Z)
and an increase in diameter of 2.

Lemma 7 If max ((h)2,(-)) - 3 for all phases, then at most () chips are required for
the Pusher to win.

Proof: Let N1 be the number of phases where the change in diameter is 1, and let N2 be
the number of phases where the change in diameter is 2. Clearly, N + 2N 2 < 2k. Further,
in each of the N phases of the former type, the height of the stacks will be decreased by
at most /. In each of the N2 phases of the latter type, the height of the stacks will be
decreased by at most /l. Let Hi be the initial height of the stack at level 0, and let Hf be
the final heights of the outer stacks after N1 + N2 phases. We now have the following:

H! > H.301 ON2

lH, +N
H_ Big2

> H,3'

Thus, if Hi = ( then H1 > 1.

Lemma 8 For the aforementioned Pusher strategy, max (( -)2, (v)) _ (3- 2v2) for all
phases.

Proof: Recall that a is the fraction of the inner stacks used to create an outer stack of
height equal to that of the remaining inner stacks. As mentioned before, we have that

< a < 2. We also have that hi = (1 - a)h and h, + h2 = ah. This implies that

h(-)= 1-

h2(-i) = 2a -I

Consider the functions z, = (h)2 (1 -a) 2 and z2 =(Lz)= 2a - 1 (see Figure 3). In the
range < a < , max(zI, z2) is clearly minimized at. the intersection of z, and z2. Equating
z, and z2 , we obtain a = 2 - v2-. Therefore, we have z,(2 - v'2) = z2(2 - V2-) = 3 - 2V2.
Thus, max(zl,z 2 ) > 3- 2v2. I

Theorem 3 The Pusher requires at most (3 + 2v2-)' chips to win, i.e. fc(k) < (3 + 2v2-)k.

Proof: This is an immediate consequence of Lemmas 7 & 8 and the fact that -- _
3-2'2 -

3 + 2v2. I
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Figure 3: z1(a) and z2 (a)

5 Generalizations to d-coloring
The 2 k-I lower bound and the 4k upper bound shown in the previous sections generalize to
bounds for chip games where more than two colors are used. Consider the d-color Chip Game
Gd(s, k), where d different colors are employed. In this case, the board forms a d-pointed
star, each ray of the star being divided into levels from 1 through k. Now the Pusher wins
if he can force a chip to level k on any of the d rays. Note that a winning strategy for the
Chooser corresponds to an algorithm for d-coloring k-hypergraphs. The following results fall
straightforwardly out of previous bounds:

Theorem 4 In the d-color Chip Game (General or Restricted), the Pusher requires at least
dk- l chips to win.

Theorem 5 If s > 2dk, then the Pusher has a winning strategy in the d-color General Chip
Game Gd(s, k).

6 Results on General and Restricted Hypergraph 2-
Coloring and Committee Meeting Problems

Consider again the General Hypergraph 2-Coloring Problem. Since the Chooser has a win-
ning strategy in the associated General Chip Game G(s, k), when s < 2 k-, we conclude
that:

Corollary 1 For s < 2k", the General Hypergraph 2-Coloring Problem can be solved by an
on-line algorithm running in O(ns) time.

Proof: At every step, the algorithm is given a node from V and the edges that it belongs
to. The algorithm colors the node according to the Chooser's winning strategy in the General
Chip Game G(s, k), as given in section 3.

To follow the Chooser's winning strategy, the algorithm computes the weight of < s
chips, assigns a color to the current node, and then adjusts the weights of these chips. So
each round takes O(s) time. There are at most IVI = n rounds, so the entire algorithm runs
on-line in 0(ns) time. U
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Since the lower bound also applies to the restricted case where each node has degree k,
we can further conclude that:

Corollary 2 For s < 2k- , the Restricted Hypergraph 2-Coloring Problem can be solved by
an on-line algorithm running in time O(kn) time.

Proof: Again, the algorithm will follow the Chooser's winning strategy in the k-Restricted
Chip Game G(s, k). It needs to compute (and update) weights of at most k chips in each
round, since the Pusher may only pick k chips in any round. Each round then involves O(k)
work. With at most IVI = n rounds, it runs in O(kn) time on-line. I

Similar corollaries can be deduced for the d-coloring problem for k-hypergraphs from
Theorem 4. These algorithms derive from Pusher-Chooser games. Since the Pusher acts like
an adaptive on-line adversary, and since the algorithms take constant amount of time per
input, they are 0(1)-competitive against adaptive on-line adversaries.

The upper bound on f, says that for s > (3 + 2 x/)k, the Pusher has a winning strategy
in c-Restricted Chip Game G(s, k), for any fixed c. In particular, the Pusher has a winning
strategy in the k-Restricted Chip Game G(s, k). Since any on-line algorithm to 2-color 7-
can be thought of as a strategy for the Chooser, we can conclude that:

Corollary 3 There exists an on-line adversary algorithm, which for any on-line 2-coloring
algorithm A and every s > (3 + 2v/2)k, produces a degree k k-hypergraph with s edges which
A fails to 2-color.

Similarly, from the upper bound for the General Hypergraph 2-Coloring Problem:

Corollary 4 There exists an on-line adversary algorithm, which for any on-line 2-coloring
algorithm A and every s > k(1 + O4bk ; k . 2 .6 18k, produces a k-hypergraph with s edges which
A fails to 2-color.

Again, similar corollaries for the d-coloring problem for k-hypergraphs can be deduced
from Theorem 5.

The chip game results given in sections 3 and 4 give us results on the Committee Meeting
Problem described in section 1.

Corollary 5 Given n committee members and s committees drawn from these members
where k is the size of the smallest committee:

1. For s < 2 k-1, the Committee Meeting Problem can be solved on-line in O(ns) time.

2. There exists an on-line adversary algorithm, which for any on-line algorithm A solving
the Committee Meeting Problem and every s > k(1 + O)k - k • 2.6 18 ', produces an
instance of the Committee Meeting Problem with s committees which A fails to solve.
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7 Open Problems

We conclude by mentioning some problems this work leaves open. Most importantly, what
is the exact value of f(k) and f,(k) with respect to the two Chip Games? Our lower bound

of 2k-1 for f(k) and f,(k) falls short of the existential lower bound of k32' for m(k), and
can probably be improved. Our strategy for the Chooser is aggressive only when the Pusher
chooses chips of unequal weights; when the Pusher chooses chips of equal weight, the Chooser
colors arbitrarily. A better strategy may be found by finding a way to make it unprofitable
for the Pusher to pick equal weights. Also, there may be a better lower bound for the
restricted chip game which takes advantage of the fact that the Pusher is limited to picking
a constant number of chips each time.

If the exact values of f(k) and f,(k) are difficult to determine, what is limk-.o f(k)-k?
(Similarly for f,?)

The General and c-Restricted Chip Games are interesting in themselves. Are there other
problems which they model?
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